As the Ebola virus outbreak continues to run amok in West Africa, scientists are looking ahead to the possibly pivotal use of experimental drugs and vaccines against the disease. It will take months to test, produce and deploy the therapies. But researchers hold out hope that these products — even incompletely vetted — might help to turn the tide against an illness that has defied public health efforts to bring it under control.

Friday 7 October 2011

Radar


Radar is a device which use waves to target object it transmits waves and wait for the reflected waves if it is unable to get reflected waves means that there is no body to reflect its waves and if reflected waves is sensed through Radar receiver than it find its speed and location by processing time gap between transmitted ray and reflected ray.
Radar is an object-detection system which uses electromagnetic waves—specifically radio waves—to determine the range, altitude, direction, or speed of both moving and fixed objects such as aircraft, ships, spacecraft, guided missiles, motor vehicles, weather formations, and terrain. The radar dish, or antenna, transmits pulses of radio waves or microwaves which bounce off any object in their path. The object returns a tiny part of the wave's energy to a dish or antenna which is usually located at the same site as the transmitter.
The military applications of radar were developed in secret in nations across the world duringWorld War II. The term RADAR was coined in 1940 by the U.S. Navy as an acronym for radiodetection and ranging. The term radar has since entered the English and other languages as the common noun radar, losing all capitalization. In the United Kingdom, the technology was initially called RDF (range and direction finding), using the same initials used for radio direction finding to conceal its ranging capability.
The modern uses of radar are highly diverse, including air traffic control, radar astronomy, air-defense systems, antimissile systems; nautical radars to locate landmarks and other ships; aircraft anticollision systems; ocean-surveillance systems, outer-space surveillance and rendezvous systems; meteorological precipitation monitoring; altimetry and flight-control systems;guided-missile target-locating systems; and ground-penetrating radar for geological observations. High tech radar systems are associated with digital signal processing and are capable of extracting objects from very high noise levels.
Other systems similar to radar have been used in other parts of the electromagnetic spectrum. One example is "lidar", which uses visible light from laser rather than radio waves.
The Primary Radar Basic Principle
(click on the components to get a describing of the block and for skip the basics)


No comments:

Post a Comment

Your Comment is posted.